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The ubiquity of adjointness

The slogan is “Adjoint
functors arise everywhere.”

Mac Lane [Mac98]

Adjoint functors are fundamental in category theory.

It is frequently useful to know that a functor admits an adjoint
and, accordingly, one of the most well known theorems in category
theory is the adjoint functor theorem [Fre64], which, together with
its variants, which gives necessary and sufficient conditions for a
functor to be left-adjoint.
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The premise of the AFT

Every left-adjoint functor is cocontinuous.

However, not every co-
continuous functor is left-adjoint.

How far are cocontinuous functors from being left-adjoint?

Theorem (Freyd)

A small-cocontinuous functor is left-adjoint if and only if it
satisfies the solution set condition.

Definition

A functor f : A → B satisfies the solution set condition if, for
every b ∈ B, the presheaf B(f−, b) : Aop → Set is weakly
multirepresentable, i.e. there exists a small family of objects
(ai)i∈I in A and an epimorphism

∐
i∈I A(−, ai) ↠ B(f−, b) in

[Aop,Set].
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Why is the adjoint functor theorem true?
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A suggestive reformulation

Theorem (Ulmer)

A small-cocontinuous functor is left-adjoint if and only if it is
small-admissible.

Definition

A functor f : A → B is small-admissible if, for every b ∈ B, the
presheaf B(f−, b) : Aop → Set is small, i.e. is a small colimit
of representable presheaves.

Ulmer’s adjoint functor theorem consequently replaces the solution set
condition in Freyd’s adjoint functor theorem by the small-admissibility
condition. Both conditions act to constrain the “size” of the functor
in a certain sense.
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The solution set condition versus small-admissibility

For the purposes of adjointness, the two conditions are equivalent.

Lemma (Ulmer)

A small-cocontinuous functor satisfies the solution set condition
if and only if it is small-admissible.

We shall focus on Ulmer’s formulation, for reasons that will become
clear.
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The three aspects of adjointness

Theorem

A small-cocontinuous functor is left-adjoint if and only if it is
small-admissible.

Adjoint functors tend to have three aspects.

• Adjointness.

• Cocontinuity.

• Size.

What is the relationship between adjointness, cocontinuity, and size?
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Relative adjointness

Definition (Ulmer)

Let j : A → E, ℓ : A → C and r : C → E be functors.

C

A E

ℓ r

j

⊣

Say that ℓ is left adjoint to r : C → E relative to j if there is
an isomorphism of hom-sets

C(ℓa, c) ∼= E(ja, rc)

natural in a ∈ A and c ∈ C.
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Identity-relative adjointness

A functor f : A → B is left-adjoint if and only if it is left-adjoint
relative to the identity on A.

B

A A

f

⊣

The concept of relative adjointness thus subsumes the concept of
adjointness.
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Yoneda-relative adjointness

Every functor f : A → B between locally small categories is left-
adjoint relative to the Yoneda embedding of A.

B

A [Aop,Set]

f B(f−2,−1)

A(−2,−1)

⊣

The right adjoint is given by the nerve functor (a.k.a. restricted
Yoneda embedding), defined by:

b 7→ (a 7→ B(fa, b))

Adjointness relative to the Yoneda embedding is therefore a tautology.
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A spectrum of adjointnesses

More generally, we can consider adjointness of a functor f : A → B
relative to a full subcategory Ã ↪→ [Aop,Set] of the category of
presheaves. This provides a spectrum of notions of adjointness,
ranging from ordinary adjointness to tautology.

B

A Ã

f B(f−2,−1)

A(−2,−1)

⊣

• Taking Ã := A, we recover adjointness.

• Taking Ã := [Aop,Set]small, the category of small presheaves
on A, we recover small-admissibility.

• Taking Ã := [Aop,Set], we have a tautology.
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A reformulation of the adjoint functor theorem

The size condition of the adjoint functor theorem may therefore be
expressed as a relative adjointness condition. Consequently, we may
see the adjoint functor theorem as breaking adjointness down into
cocontinuity and relative adjointness.

Theorem

A functor f : A → B is left-adjoint if and only if it is small-
cocontinuous and left-adjoint relative to the restricted Yoneda
embedding A → [Aop,Set]small.
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A mild generalisation

The category of small presheaves [Aop,Set]small has a universal
property: it is the free cocompletion of A under small colimits.

We
might wonder what is particularly special about small colimits.

Theorem (Tholen)

Let Φ be a class of colimits. A functor f : A → B is left-adjoint
if and only if it is Φ-cocontinuous and Φ-admissible, i.e. left-
adjoint relative to the free Φ-cocompletion A → [Aop,Set]Φ.

Why is this an improvement over Freyd’s adjoint functor theorem? It
explicates the strong connection between cocontinuity and admissibil-
ity: we can relax cocontinuity, so long as we strengthen admissibility.

Taking Φ to be the small colimits is in some sense the “strongest”
assertion, as when Φ = ∅, we get a tautology.
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Examples of Φ-admissibility

Definition (Diers, Φ = {discrete colimits})
A functor ℓ : A → C is left-multiadjoint when there exists a set
I and an I-indexed family of functors {ri : C → A}i∈I together
with an isomorphism of hom-sets, natural in a ∈ A and c ∈ C.

C(ℓa, c) ∼=
∐

i∈I A(a, ric)

Definition (Solian and Viswanathan, Φ = {finite colimits})
A functor ℓ : A → C is left-pluriadjoint when there exists a
finite category D and an D-indexed family of functors {ri : C →
A}i∈I together with an isomorphism of hom-sets, natural in
a ∈ A and c ∈ C.

C(ℓa, c) ∼= colimd∈DA(a, rdc)
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A family of AFTs

Φ A functor is left-adjoint iff it .

∅ is left-adjoint

Discrete colimits preserves coproducts and is left-multiadjoint

Finite colimits preserves finite colimits and is left-pluriadjoint

Small colimits preserves small colimits and is small-admissible

33



An observation

Theorem

Let Φ be a class of colimits. A functor is left-adjoint if and only
if it is Φ-cocontinuous and Φ-admissible.

Note that left-adjointness is itself an admissibility property. Can we
generalise ∅-admissibility to other notions of admissibility?

Theorem

Let Ψ and Φ be classes of colimits, for which Ψ-limits commute
with Φ-colimits in Set. A functor is Φ-admissible if and only if
it is Ψ-cocontinuous and (Φ ◦Ψ)-admissible.
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Some examples

Some consequences of this general adjoint functor theorem follow.

• A functor is left-adjoint if and only if it preserves small colimits
and is small-admissible [Ulm71].

• A functor is left-multiadjoint if and only if it preserves
coproducts and is small-admissible [Die77].

• A functor is left-pluriadjoint if and only if it preserves finite
colimits and is small-admissible [SV90].
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A formal understanding of the AFT

Versions of the adjoint functor theorem exist not just for ordinary func-
tors, but also enriched functors, internal functors, indexed functors,
and so on. Similarly, we should hope that this general admissibility
theorem also holds in these settings.

This is the motivation for formal category theory, which allows us
to prove a theorem once, and to recover each of these settings as
examples.

To prove such a theorem, we shall move to the context of 2-categories.
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Lax-idempotent pseudomonads
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Lax-idempotent pseudomonad

A lax-idempotent pseudomonad is a 2-dimensional notion of monad
that captures the universal property of free cocompletions.

Definition ([Koc95; Zöb76])

A pseudomonad T is lax-idempotent if and only if every 1-cell
between the underlying objects of two T -algebras has a unique
lax T -algebra morphism structure.

Definition

A lax-idempotent pseudomonad is locally fully faithful if, for
each object a, the 1-cell ηa : a → Ta is representably fully
faithful, i.e. if K[ηa,−] : K[Ta,−] → K[a,−] is fully faithful.
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Cocompleteness and cocontinuity

Definition

An object a is T -cocomplete if it is a T -algebra, equivalently if
ηa : a → Ta admits a left adjoint with invertible counit.

Definition

A 1-cell f : a → b is T -cocontinuous if it is a pseudomorphism
for T , equivalently if the unique 2-cell forming the lax morphism
structure admits an inverse.

46



Φ-cocompletions

Let V be a nice monoidal category. For every class of V-enriched
colimits Φ, there is a locally fully faithful lax-idempotent pseu-
domonad on the 2-category V-CAT of (large) V-categories sending
each V-category to its cocompletion under Φ-colimits, given by
A 7→ [Aop,V]Φ.

A pseudoalgebra for this pseudomonad is a Φ-cocomplete V-category,
and a functor is a pseudomorphism if and only if it is Φ-cocontinuous.
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Admissibility

Definition ([BF99])

A 1-cell f : a → b is T -admissible if Tf admits a right adjoint.

Ta Tb
Tf

fT

⊣

Example

When T corresponds to the cocompletion of a V-category under
some class Φ of colimits, then T -admissibility corresponds to
relative adjointness, i.e. Φ-admissibility in the ordinary sense.

B

A [Aop,V]Φ

f

⊣
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Pseudodistributive laws

A pseudodistributive law between two pseudomonads is a
2-dimensional notion of distributive law.

Definition

Let R and I be lax-idempotent pseudomonads on 2-category
K. R distributes over I if there exists a lifting Ĩ of I to the
2-category R-Alg of R-algebras.

R-Alg R-Alg

K K

Ĩ

I

UR UR
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Distributivity via commutativity

Let Ψ and Φ be classes of V-enriched colimits, for which Ψ-limits
commute with Φ-colimits in V. Then the pseudomonad induced by
Ψ distributes over the pseudomonad induced by Φ.

Ψ Φ Φ-admissibility

∅ Small weights Small-admissibility

Connected weights Discrete weights Multiadjointness

Finite weights Filtered weights Pluriadjointness

Small weights ∅ Adjointness
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Main result

Theorem

Let R and I be lax-idempotent pseudomonads for which R
distributes over I. Suppose that I is locally fully faithful. A
1-cell f : a → b between R-cocomplete objects is I-admissible
if and only if it is R-cocontinuous and IR-admissible.

Corollary

Let R be a lax-idempotent pseudomonad. A 1-cell f : a → b
between R-cocomplete objects is left-adjoint if and only if it is
R-cocontinuous and R-admissible.
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The AFT for locally presentable categories

Theorem

Let f : A → B be a functor between locally presentable cate-
gories.

1. f is left-adjoint if and only if it is small-cocontinuous.
2. f is right-adjoint if and only if it is small-continuous and

accessible.

Proof.

1. Every functor between locally presentable categories is
small-admissible.

2. A functor between accessible categories is
small-coadmissible if and only if it is accessible [LT23].
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Summary

• The adjoint functor theorem fundamentally expresses the
relationship between adjointness, cocontinuity, and
admissibility.

• These properties are captured respectively by the notions of
adjointness in a 2-category, and cocontinuity and admissibility
for a lax-idempotent pseudomonad.

• Adjointness is itself an admissibility property, and the adjoint
functor theorem can be generalised to this context.

• The relationship between admissibility and cocontinuity is
mediated by a pseudodistributive law between lax-idempotent
pseudomonads.

You can read our (12-page) preprint on arXiv:

Adjoint functor theorems for lax-idempotent pseudomonads [ADL23]

57

https://arxiv.org/abs/2306.10389
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